Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Chlorido{1-[2-(ethylsulfonyl)phenyldiazenyl]-4-methoxy-2-naphthyl- $\kappa^{3}C,N,O$ }palladium(II) sesquihydrate

Satyadeep Singh Chhetri, Achintesh Narayan Biswas, Purak Das, Abhisek Saha and Pinaki Bandyopadhyay*

Department of Chemistry, University of North Bengal, Siliguri 734 013, India Correspondence e-mail: pbchem@rediffmail.com

Received 28 October 2007; accepted 31 October 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.031; wR factor = 0.083; data-to-parameter ratio = 14.9.

In the title compound, $[Pd(C_9H_{17}N_2O_3S)Cl]\cdot 1.5H_2O$, the Pd atom is tetracoordinated by a naphthyl C, a diazene N, a Cl and a sulfonyl O atom in an approximate square-planar geometry; the asymmetric unit also contains 1.5 molecules of water, one molecule lying on a twofold rotation axis. A hydrophilic environment wrapping the polar portion of the compound is created by an array of water molecules. The crystal packing is stabilized by an intermolecular $C-H \cdots O$ interaction and eight intermolecular π - π interactions; the centroid-centroid distances range from 3.647(2) -3.8098 (18) Å, with perpendicular interplanar distances between 3.169 and 3.590 Å.

Related literature

For related literature, see: Bagchi et al. (2007); Dupont et al. (2005); Neogi et al. (2006); Ersanlı, Albayrak, Odabaşoğlu & Kazak (2005); Ghedini et al. (1991); Lanfredi et al. (1984).

Experimental

Crystal data [Pd(C9H17N2O3S)Cl]·1.5H2O $M_r = 522.31$ Monoclinic, C2/c a = 21.1870 (18) Å b = 17.1097 (14) Å $c = 13.4827 (11) \text{ \AA}$ $\beta = 124.8240 (10)^{\circ}$

V = 4012.2 (6) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 1.19 \text{ mm}^{-1}$ T = 295 (2) K $0.38\,\times\,0.26\,\times\,0.19$ mm $R_{\rm int} = 0.020$

12258 measured reflections

3904 independent reflections

3503 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX CCD area detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.694, T_{\max} = 0.799$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	262 parameters
$wR(F^2) = 0.083$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 1.07 \text{ e } \text{\AA}^{-3}$
3904 reflections	$\Delta \rho_{\rm min} = -0.68 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Pd1 C2	1 038 (3)	Pd1 O2	2 166 (2)
Pd1 - N2	2.018 (2)	Pd1-Cl1	2.2895 (8)
C2-Pd1-N2 N2-Pd1-O2	80.32 (11) 93.58 (9)	C2-Pd1-Cl1 O2-Pd1-Cl1	96.06 (9) 90.04 (6)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3\cdots Cl1$ $C13-H13\cdots O3$ $C18-H18A\cdots O3^{i}$	0.93 0.93 0.97	2.77 2.41 2.52	3.297 (4) 2.841 (5) 3.443 (4)	117 108 158
Summetry code: (i) $-r + 1 - v + 5 - z + 2$				

Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{5}{2}, -z + 2.$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2000): data reduction: SAINT: program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Financial support (SR/S1/IC-08/2007) from the DST, Government of India, is gratefully acknowledged. We thank the CSIR (India) for the award of a fellowship (PD) and the UGC (New Delhi) for the Special Assistance Programme to our Department. We also thank Professor S. Pal, School of Chemistry, University of Hyderabad, India, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2462).

References

- Bagchi, V., Das, P. & Bandyopadhyay, D. (2007). Acta Cryst. E63, m2130. Bruker (1997). SHELXTL. Bruker AXS Inc. Madison, Wisconsin, USA. Bruker (1998). SMART. Version 5.054. Bruker AXS Inc. Madison, Wisconsin, USA.
- Bruker (2000). SAINT. Version 6.02a. Bruker AXS Inc. Madison, Wisconsin, USA.
- Dupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527-2571. Ersanlı, C. C., Albayrak, C., Odabaşoğlu, M. & Kazak, C. (2005). Acta Cryst. E61, 04051-04053.

- Ghedini, M., Pucci, D., Munno, G. D., Viterbo, D., Neve, F. & Armentano, S. (1991). *Chem. Mater.* **3**, 65–72.
- Lanfredi, A. M. M., Ugozzoli, F., Ghedini, M. & Licoccia, S. (1984). Inorg. Chim. Acta, 86, 165–168.
- Neogi, D. N., Das, P., Biswas, A. N. & Bandyopadhyay, P. (2006). *Polyhedron*, **25**, 2149–2152.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2973-m2974 [doi:10.1107/S1600536807054815]

$\label{eq:chord} Chlorido \{1-[2-(ethylsulfonyl)phenyldiazenyl]-4-methoxy-2-naphthyl-\kappa^3 C, N, O\} palladium (II) \qquad ses-quihydrate$

S. S. Chhetri, A. N. Biswas, P. Das, A. Saha and P. Bandyopadhyay

Comment

Cyclopalladated compounds find numerous applications (Dupont *et al.*, 2005) in organic synthesis, catalysis, photochemistry and metallomesogen chemistry. Although a number of cyclometallated complexes of palladium (Dupont *et al.*, 2005 & Neogi *et al.*, 2006) have been reported in literature, the chemistry of cyclopalladates having sulfonyl ligand framework is not explored much. Against this background, we report here the crystal structure of (I).

The molecular structure of the title compound, (I), is shown in Fig. 1, with the atom numbering scheme. The palladium atom along with donor set of four atoms lie in a plane. Selected bond lengths and bond angles are listed in Table 1. The packing arrangement of (I) is shown in Fig. 2. The N=N bond length is typical of other cyclopalladated azoarenes (Neogi *et al.*, 2006). A hydrophilic environment wrapping the polar portion of the compound is being created by an array of water molecules. Intramolecular C–H···Cl and C–H···O interactions are also present in (I) (Table 2, Fig. 3). The crystal packing is stabilized by a intermolecular C18–H18A···O3ⁱ [Symmetry codes: (i) -x + 1/2, -y + 5/2, -z + 2.] interaction (Table 2, Fig. 3) and eight intermolecular π - π interactions (Bagchi *et al.*, 2007); the *Cg3*-*Cg3*ⁱⁱⁱ, *Cg3*–*Cg3*ⁱⁱⁱ, *Cg4*–*Cg3*ⁱⁱⁱ, *Cg5*–*Cg3*ⁱⁱⁱ, *Cg5*–*Cg3*ⁱⁱⁱ, *Cg5*–*Cg3*ⁱⁱⁱ and *Cg5*–*Cg5*ⁱⁱⁱ [Symmetry codes: (ii) -x, y, 1/2 - z; (iii) -x, -y, -z·*Cg3*, *Cg4* and *Cg5* are the centroids of C1–C10, C5–C9 and C11–C16 rings respectively.] distances are 3.647 (2), 3.6495 (18), 3.8098 (18), 3.740 (2) and 3.850 (3) Å (Fig. 4); the corresponding perpendicular distances are 3.396, 3.402, 3.169, 3.464, 3.590, 3.462, 3.434 and 3.480 Å respectively.

Experimental

The title compound was synthesized by reacting 1-[2-(ethylsulfonyl)phenyldiazenyl]-4-methoxynaphthalene with disodiumtetrachloropalladate in aqueous ethanol medium at room temperature. The product was purified by chromatography. Crystals suitable for X-ray crystallography was obtained by slow diffusion of dichloromethane solution into hexane.

Refinement

The O-bound H atom was located in a difference Fourier map and its isotropic displacement parameter were freely refined after fixing the coordinates. C-bound H atoms were included at calculated positions as riding atoms with C–H distances of 0.93 Å for aromatic, 0.96 Å for CH₃ and 0.97 Å for CH₂ H atoms, with U_{iso} (H) =1.2 U_{eq} (C) (1.5 U_{eq} for methyl groups).

Figures

$Chlorido \{1-[2-(ethylsulfonyl)phenyldiazenyl]-4-methoxy-2-naphthyl- \\ \kappa^3 C, N, O\} palladium (II) \ sesquihydrate$

Crystal data	
$[Pd(C_9H_{17}N_2O_3S)Cl] \cdot 1.5H_2O$	$F_{000} = 2104$
$M_r = 522.31$	$D_{\rm x} = 1.729 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 3904 reflections
a = 21.1870 (18) Å	$\theta = 1.7 - 25.9^{\circ}$
b = 17.1097 (14) Å	$\mu = 1.19 \text{ mm}^{-1}$
c = 13.4827 (11) Å	T = 295 (2) K
$\beta = 124.8240 \ (10)^{\circ}$	Needle, pink
V = 4012.2 (6) Å ³	$0.38\times0.26\times0.19~mm$
Z = 8	

Data collection

Bruker SMART APEX CCD area detector diffractometer	3904 independent reflections
Radiation source: fine-focus sealed tube	3503 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
T = 298(2) K	$\theta_{\text{max}} = 25.9^{\circ}$
phi and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -26 \rightarrow 26$
$T_{\min} = 0.694, \ T_{\max} = 0.799$	$k = -20 \rightarrow 20$
12258 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.083$	$w = 1/[\sigma^2(F_o^2) + (0.0445P)^2 + 5.4842P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{\text{max}} = 0.001$
3904 reflections	$\Delta \rho_{max} = 1.07 \text{ e} \text{ Å}^{-3}$
262 parameters	$\Delta \rho_{min} = -0.68 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pd1	0.167430 (12)	0.985070 (13)	0.74687 (2)	0.03443 (9)
C2	0.09189 (15)	0.90245 (17)	0.6922 (2)	0.0331 (6)
S1	0.22366 (4)	1.14847 (5)	0.85771 (7)	0.04165 (19)
Cl1	0.27025 (5)	0.90451 (5)	0.81104 (9)	0.0582 (2)
N1	0.00874 (14)	1.01220 (14)	0.6375 (2)	0.0354 (5)

02	0.24220 (12)	1.08601 (13)	0.8039 (2)	0.0455 (5)
O3	0.27501 (13)	1.21410 (14)	0.9014 (2)	0.0571 (6)
C3	0.10189 (16)	0.82172 (18)	0.6998 (3)	0.0379 (6)
H3	0.1507	0.8006	0.7355	0.046*
C1	0.01766 (15)	0.93370 (17)	0.6381 (2)	0.0330 (6)
N2	0.07265 (13)	1.04999 (14)	0.6875 (2)	0.0347 (5)
С9	-0.03752 (16)	0.80271 (17)	0.5939 (2)	0.0354 (6)
C10	-0.04846 (16)	0.88408 (18)	0.5863 (2)	0.0345 (6)
01	0.04360 (12)	0.69462 (13)	0.6603 (2)	0.0477 (5)
C11	0.06450 (17)	1.13260 (17)	0.6846 (3)	0.0362 (6)
C4	0.03909 (16)	0.77313 (17)	0.6542 (3)	0.0370 (6)
C8	-0.12377 (16)	0.91331 (19)	0.5259 (3)	0.0422 (7)
H8	-0.1318	0.9670	0.5206	0.051*
C18	0.22294 (19)	1.1079 (2)	0.9776 (3)	0.0491 (8)
H18A	0.2187	1.1495	1.0224	0.059*
H18B	0.1785	1.0740	0.9450	0.059*
C5	-0.10186 (17)	0.7528 (2)	0.5393 (3)	0.0429 (7)
Н5	-0.0950	0.6989	0.5432	0.051*
C12	0.12879 (17)	1.18202 (18)	0.7525 (3)	0.0400 (7)
C16	-0.00722 (18)	1.16709 (19)	0.6124 (3)	0.0419 (7)
H16	-0.0506	1.1357	0.5675	0.050*
C6	-0.17412 (17)	0.7830(2)	0.4809 (3)	0.0492 (8)
H6	-0.2164	0.7497	0.4445	0.059*
C7	-0.18495 (18)	0.8641 (2)	0.4754 (3)	0.0506 (8)
H7	-0.2344	0.8844	0.4369	0.061*
C17	0.1169 (2)	0.6590(2)	0.7179 (4)	0.0663 (11)
H17A	0.1409	0.6751	0.6786	0.099*
H17B	0.1112	0.6032	0.7129	0.099*
H17C	0.1484	0.6745	0.8012	0.099*
C13	0.1196 (2)	1.26272 (19)	0.7420 (3)	0.0505 (8)
H13	0.1624	1.2950	0.7850	0.061*
C15	-0.0153 (2)	1.2474 (2)	0.6061 (3)	0.0494 (8)
H15	-0.0642	1.2694	0.5589	0.059*
C14	0.0481 (2)	1.2949 (2)	0.6691 (3)	0.0549 (9)
H14	0.0424	1.3490	0.6621	0.066*
C19	0.2955 (2)	1.0614 (3)	1.0621 (4)	0.0700 (11)
H19A	0.2948	1.0145	1.0223	0.105*
H19B	0.2981	1.0479	1.1335	0.105*
H19C	0.3395	1.0922	1.0840	0.105*
O4	0.4461 (4)	1.0023 (4)	1.0164 (7)	0.180(3)
05	0.0000	0.5318 (7)	0.7500	0.221 (5)
H5A	-0.0150	0.5680	0.6840	1.0 (3)*
H4B	0.4840	0.9970	1.0000	0.150*
H4A	0.4280	0.9480	1.0100	0.37 (9)*
Atomic displace	ement parameters $(Å^2)$)		
1	/			

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
e	e	e	e	e	e

Pd1	0.02794 (13)	0.03781 (15)	0.03805 (15)	-0.00271 (8)	0.01914 (11)	-0.00357 (9)
C2	0.0302 (13)	0.0405 (15)	0.0278 (13)	-0.0038 (11)	0.0162 (11)	-0.0027 (11)
S1	0.0362 (4)	0.0378 (4)	0.0512 (4)	-0.0080 (3)	0.0251 (4)	-0.0050 (3)
Cl1	0.0369 (4)	0.0491 (5)	0.0855 (6)	0.0040 (3)	0.0331 (4)	-0.0021 (4)
N1	0.0319 (12)	0.0433 (14)	0.0316 (12)	-0.0012 (10)	0.0185 (11)	-0.0021 (10)
O2	0.0379 (11)	0.0475 (13)	0.0556 (13)	-0.0094 (9)	0.0295 (11)	-0.0069 (10)
O3	0.0456 (13)	0.0448 (13)	0.0768 (17)	-0.0139 (10)	0.0326 (13)	-0.0100 (12)
C3	0.0291 (14)	0.0435 (16)	0.0364 (15)	-0.0001 (12)	0.0158 (12)	-0.0026 (12)
C1	0.0307 (13)	0.0403 (16)	0.0291 (14)	-0.0028 (12)	0.0177 (12)	-0.0037 (11)
N2	0.0313 (12)	0.0391 (13)	0.0345 (12)	-0.0007 (10)	0.0193 (10)	-0.0010 (10)
C9	0.0327 (14)	0.0425 (16)	0.0321 (14)	-0.0028 (12)	0.0191 (12)	-0.0032 (12)
C10	0.0304 (13)	0.0448 (16)	0.0275 (13)	-0.0021 (12)	0.0161 (11)	-0.0051 (12)
01	0.0374 (11)	0.0386 (12)	0.0606 (14)	0.0006 (9)	0.0242 (11)	-0.0002 (10)
C11	0.0405 (15)	0.0392 (16)	0.0358 (15)	0.0003 (12)	0.0259 (13)	-0.0016 (12)
C4	0.0349 (14)	0.0399 (16)	0.0341 (15)	-0.0012 (12)	0.0185 (13)	-0.0025 (12)
C8	0.0329 (15)	0.0470 (18)	0.0415 (16)	0.0034 (13)	0.0181 (13)	-0.0056 (13)
C18	0.0490 (18)	0.0493 (19)	0.0474 (19)	-0.0071 (15)	0.0266 (16)	-0.0062 (15)
C5	0.0373 (15)	0.0453 (18)	0.0444 (17)	-0.0080 (13)	0.0223 (14)	-0.0081 (14)
C12	0.0395 (15)	0.0385 (16)	0.0462 (17)	-0.0020 (13)	0.0269 (14)	0.0002 (13)
C16	0.0420 (16)	0.0467 (18)	0.0387 (16)	0.0039 (13)	0.0240 (14)	0.0023 (13)
C6	0.0330 (16)	0.058 (2)	0.0501 (19)	-0.0119 (14)	0.0200 (15)	-0.0139 (16)
C7	0.0279 (15)	0.063 (2)	0.0506 (19)	-0.0002 (14)	0.0161 (14)	-0.0092 (16)
C17	0.0419 (19)	0.045 (2)	0.097 (3)	0.0077 (16)	0.031 (2)	0.006 (2)
C13	0.0541 (19)	0.0381 (17)	0.061 (2)	-0.0064 (15)	0.0336 (18)	-0.0025 (15)
C15	0.0516 (19)	0.052 (2)	0.0458 (18)	0.0125 (16)	0.0286 (16)	0.0072 (15)
C14	0.069 (2)	0.0399 (18)	0.061 (2)	0.0086 (17)	0.040 (2)	0.0069 (16)
C19	0.076 (3)	0.066 (3)	0.054 (2)	0.008 (2)	0.029 (2)	0.0016 (19)
O4	0.146 (5)	0.171 (6)	0.165 (6)	-0.029 (4)	0.054 (5)	0.013 (4)
O5	0.143 (7)	0.224 (10)	0.341 (15)	0.000	0.166 (10)	0.000

Geometric parameters (Å, °)

Pd1—C2	1.938 (3)	C18—C19	1.514 (5)
Pd1—N2	2.018 (2)	C18—H18A	0.9700
Pd1—O2	2.166 (2)	C18—H18B	0.9700
Pd1—Cl1	2.2895 (8)	C5—C6	1.362 (4)
C2—C3	1.392 (4)	С5—Н5	0.9300
C2—C1	1.408 (4)	C12—C13	1.390 (5)
S1—O3	1.435 (2)	C16—C15	1.381 (5)
S1—O2	1.466 (2)	C16—H16	0.9300
S1—C18	1.768 (3)	C6—C7	1.402 (5)
S1—C12	1.768 (3)	С6—Н6	0.9300
N1—N2	1.290 (3)	С7—Н7	0.9300
N1	1.356 (4)	C17—H17A	0.9600
C3—C4	1.380 (4)	C17—H17B	0.9600
С3—Н3	0.9300	C17—H17C	0.9600
C1-C10	1.433 (4)	C13—C14	1.365 (5)
N2-C11	1.422 (4)	С13—Н13	0.9300
C9—C10	1.405 (4)	C15—C14	1.374 (5)

C9—C5	1.408 (4)	С15—Н15	0.9300
C9—C4	1.430 (4)	C14—H14	0.9300
C10—C8	1.405 (4)	С19—Н19А	0.9600
O1—C4	1.346 (4)	С19—Н19В	0.9600
O1—C17	1.418 (4)	С19—Н19С	0.9600
C11—C16	1.384 (4)	O4—H4B	0.9500
C11—C12	1.409 (4)	O4—H4A	0.9900
C8—C7	1.358 (4)	O5—H5A	0.9800
С8—Н8	0.9300		
C2—Pd1—N2	80.32 (11)	C19—C18—H18A	109.4
C2—Pd1—O2	173.86 (10)	S1—C18—H18A	109.4
N2—Pd1—O2	93.58 (9)	C19—C18—H18B	109.4
C2—Pd1—Cl1	96.06 (9)	S1—C18—H18B	109.4
N2—Pd1—Cl1	176.38 (7)	H18A—C18—H18B	108.0
O2—Pd1—Cl1	90.04 (6)	C6—C5—C9	120.3 (3)
C3—C2—C1	119.5 (2)	С6—С5—Н5	119.8
C3—C2—Pd1	129.6 (2)	С9—С5—Н5	119.8
C1—C2—Pd1	110.8 (2)	C13—C12—C11	120.2 (3)
03 - 81 - 02	114 78 (14)	C13-C12-S1	1157(2)
03 - 81 - 018	109 40 (16)	C11 - C12 - S1	1241(2)
02 - 81 - C18	108 13 (15)	C_{15} $-C_{16}$ $-C_{11}$	121.0(3)
03 - 81 - C12	108.86 (15)	C_{15} $-C_{16}$ $-H_{16}$	119.5
02 - 81 - C12	110.03 (14)	C_{11} C_{16} H_{16}	119.5
$C_{18} = S_{1} = C_{12}$	105 20 (15)	C5-C6-C7	120.2 (3)
N2_N1_C1	103.20(13)	C5_C6_H6	110.0
$S1_02_Bd1$	113.1(2) 114.10(11)	C7_C6_H6	110.0
$C_{1} = C_{2} = C_{1}$	119.8 (3)	C8-C7-C6	119.9 120.4(3)
$C_{4} = C_{3} = C_{2}$	120.1	C8-C7-H7	110.9
$C_2 = C_3 = H_3$	120.1	C6 C7 H7	110.0
\mathbb{C}_{2} \mathbb{C}_{3} \mathbb{C}_{1} \mathbb{C}_{2}	120.1	$C_{0} = C_{1} = H_{1}$	119.0
N1 = C1 = C2	119.5(2) 110.3(2)	O1 C17 H17R	109.5
$C_2 = C_1 = C_{10}$	119.5(2) 121.3(3)	H17A C17 H17B	109.5
$N_{1} = N_{2} = C_{10}$	121.3(3) 114.2(2)	$\begin{array}{c} \text{III} / \text{A} \\ \text{O1} \text{C17} \text{H17C} \\ \end{array}$	109.5
NI N2 D41	114.2(2)		109.5
NI—N2—PdI	110.19 (19)	H1/A - C1/ - H1/C	109.5
C11—N2—Pd1	129.48 (19)	HI/B = CI/= HI/C	109.5
C10 - C9 - C3	119.5 (3)	C14 - C13 - C12	120.5 (3)
C10-C9-C4	118.6 (3)	C14—C13—H13	119.7
$C_{3} = C_{9} = C_{4}$	121.9 (3)	С12—С13—Н13	119.7
C9—C10—C8	118.7 (3)	C14—C15—C16	120.5 (3)
C9—C10—C1	118.5 (2)	С14—С15—Н15	119.7
C8—C10—C1	122.8 (3)	С16—С15—Н15	119.7
C4—O1—C17	118.7 (2)	C13—C14—C15	119.8 (3)
C16—C11—C12	117.8 (3)	C13—C14—H14	120.1
C16—C11—N2	120.7 (3)	C15—C14—H14	120.1
C12—C11—N2	121.4 (3)	C18—C19—H19A	109.5
O1—C4—C3	123.9 (3)	C18—C19—H19B	109.5
O1—C4—C9	113.9 (2)	H19A—C19—H19B	109.5
C3—C4—C9	122.2 (3)	С18—С19—Н19С	109.5
C7—C8—C10	120.8 (3)	H19A—C19—H19C	109.5

С7—С8—Н8	119.6	H19B—C19—H19C	109.5
С10—С8—Н8	119.6	H4B—O4—H4A	103.0
C19—C18—S1	111.0 (3)		
N2—Pd1—C2—C3	-176.2 (3)	C17—O1—C4—C3	0.7 (5)
Cl1—Pd1—C2—C3	3.6 (3)	C17—O1—C4—C9	179.8 (3)
N2—Pd1—C2—C1	3.79 (18)	C2—C3—C4—O1	-178.2 (3)
Cl1—Pd1—C2—C1	-176.32 (18)	C2—C3—C4—C9	2.7 (4)
O3—S1—O2—Pd1	177.03 (14)	C10-C9-C4-O1	177.8 (2)
C18—S1—O2—Pd1	54.61 (17)	C5—C9—C4—O1	-4.2 (4)
C12—S1—O2—Pd1	-59.78 (17)	C10—C9—C4—C3	-3.1 (4)
N2—Pd1—O2—S1	38.00 (15)	C5—C9—C4—C3	175.0 (3)
Cl1—Pd1—O2—S1	-141.84 (13)	C9—C10—C8—C7	-0.3 (4)
C1—C2—C3—C4	0.1 (4)	C1C10C8C7	178.3 (3)
Pd1-C2-C3-C4	-179.9 (2)	O3—S1—C18—C19	-75.3 (3)
N2—N1—C1—C2	1.0 (4)	O2—S1—C18—C19	50.3 (3)
N2-N1-C1-C10	179.6 (2)	C12—S1—C18—C19	167.9 (3)
C3—C2—C1—N1	176.1 (2)	C10-C9-C5-C6	-0.9 (4)
Pd1—C2—C1—N1	-4.0 (3)	C4—C9—C5—C6	-178.9 (3)
C3—C2—C1—C10	-2.5 (4)	C16-C11-C12-C13	-2.7 (4)
Pd1-C2-C1-C10	177.5 (2)	N2-C11-C12-C13	176.0 (3)
C1—N1—N2—C11	178.1 (2)	C16-C11-C12-S1	175.1 (2)
C1—N1—N2—Pd1	2.4 (3)	N2-C11-C12-S1	-6.2 (4)
C2—Pd1—N2—N1	-3.68 (19)	O3—S1—C12—C13	-7.3 (3)
O2—Pd1—N2—N1	176.99 (19)	O2—S1—C12—C13	-133.9 (2)
C2—Pd1—N2—C11	-178.6 (2)	C18—S1—C12—C13	109.8 (3)
O2—Pd1—N2—C11	2.1 (2)	O3—S1—C12—C11	174.8 (2)
C5—C9—C10—C8	1.2 (4)	O2-S1-C12-C11	48.2 (3)
C4—C9—C10—C8	179.3 (3)	C18—S1—C12—C11	-68.1 (3)
C5—C9—C10—C1	-177.4 (3)	C12-C11-C16-C15	0.8 (4)
C4—C9—C10—C1	0.6 (4)	N2-C11-C16-C15	-177.9 (3)
N1—C1—C10—C9	-176.4 (2)	C9—C5—C6—C7	-0.5 (5)
C2—C1—C10—C9	2.1 (4)	C10—C8—C7—C6	-1.0 (5)
N1—C1—C10—C8	4.9 (4)	C5—C6—C7—C8	1.4 (5)
C2-C1-C10-C8	-176.6 (3)	C11-C12-C13-C14	2.1 (5)
N1—N2—C11—C16	-12.3 (4)	S1—C12—C13—C14	-175.8 (3)
Pd1—N2—C11—C16	162.7 (2)	C11—C16—C15—C14	1.8 (5)
N1—N2—C11—C12	169.0 (3)	C12—C13—C14—C15	0.4 (5)
Pd1—N2—C11—C12	-16.0 (4)	C16—C15—C14—C13	-2.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C3—H3…Cl1	0.93	2.77	3.297 (4)	117
С13—Н13…О3	0.93	2.41	2.841 (5)	108
C18—H18A····O3 ⁱ	0.97	2.52	3.443 (4)	158
Symmetry codes: (i) $-x+1/2$, $-y+5/2$, $-z+2$.				

sup-7

Fig. 2

Fig. 3

Fig. 4